skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Estabrooks, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Knots in open strands such as ropes, fibers, and polymers, cannot typically be described in the language of knot theory, which characterizes only closed curves in space. Simulations of open knotted polymer chains, often parameterized to DNA, typically perform a closure operation and calculate the Alexander polynomial to assign a knot topology. This is limited in scenarios where the topology is less well-defined, for example when the chain is in the process of untying or is strongly confined. Here, we use a discretized version of the Second Vassiliev Invariant for open chains to analyze Langevin Dynamics simulations of untying and strongly confined polymer chains. We demonstrate that the Vassiliev parameter can accurately and efficiently characterize the knotted state of polymers, providing additional information not captured by a single-closure Alexander calculation. We discuss its relative strengths and weaknesses compared to standard techniques, and argue that it is a useful and powerful tool for analyzing polymer knot simulations. 
    more » « less